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Abstract. Let A be the integral closure of the polynomials withing the ring
of algebraic functions in one variable. We show that A interprets the ring of
integers.

1. Introduction

For an integral domain A, let Aint denote the integral closure of A within the
algebraic closure of the field of fractions of A. Thus Zint is the ring of algebraic
integers. Our motivation is the theorem of [3], that the theory of Zint is decidable
(see also [4], [2].) There is a well-established analogy, going back to Leibniz and
Euler, between integers and polynomials; rational numbers and rational functions;
algebraic numbers and algebraic functions. The analogue of Zint would appear
to be C[t]int, the ring of algebraic functions that are entire, i.e. holomorphic as
functions on the associated Riemann surface. It is thus natural to ask as to the
decidability of this ring. The answer turns out to go the other way:

Theorem 1.1. Let k be a field of positive Kroneker dimension. Let k[t]int be the
integral closure of k[t] in k(t)alg. Then Th(k[t]int,+, ·, t) interprets Th(N,+, ·).
In particular, (k[t]int,+, ·) is undecidable.

Recall that the Kronecker dimension Kr.dim.(k) of a field k is defined to be
0 for a finite field k, 1 for k = Q, and in general Kr.dim.(k) := Kr.dim(F ) +
tr.deg.F (k), where F is the prime field of k. Thus the only fields k left out are
those algebraic over a finite field. In fact for such fields, it was proved in [4] that
k[t]int is is decidable.

In the finite field case, the first and fundamental principle is is that of glueing.
Given finitely many primes p1, . . . , pk of k(t), and elements a1, . . . , ak of k[t], in
some finite extension L it is possible to find an integer that is close to ai at primes
above pi, and a unit at any other prime. This is no longer possible when k is a
non-algebraic field; the obstruction to glueing on k(C) in this sense is measured
by the Jacobian of C up to torsion, and related Q-vector spaces. An interesting
structure becomes interpretable, consisting of the direct limit of all Jacobians,
along with a filtration according to supports. However, the field of coefficients
Q turns out to be interpretable within it. It remains a very interesting open
problem to find a decidable setting capturing the essential geometry here.
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Throughout this paper, k is a field of positive Kronecker dimension. Note that
in Theorem 1.1 we may assume k is algebraically closed, since changing k to kalg

does not change the ring k[t]int.

2. Definable systems of class groups

Let k be an algebraically closed field. Fix an algebraic closure k(t)alg of the field
of rational functions k(t). Let k[t]int be the integral closure of k[t] in k(t)alg. Let
I be the set finite extension fields of k(t), contained in k(t)alg. This is a directed
partially ordered set, under inclusion. Each i ∈ I is the function field of a smooth
projective curve Ci, over k (we will also denote this field by ki.) Given i ≤ j ∈ I

there is a unique morphism pji : Cj → Ci of curves, corresponding to the given
inclusion of function fields; the pji form a directed system. The smallest element,
with function field k(t), is C0

∼= P1. We fix an element ∞t ∈ C0(k), the pole of t.
For any i, if C = Ci denote Caf = Ci,af = C r p−1i0 (∞t).

Lemma 2.1. Any finitely generated ideal of k[t]int is 2-generated as an ideal.
For any curve C, any function Caf (k) → N with finite support has the form
p 7→ min(vp(f), vp(g)) for some f, g ∈ k[t]int.

Proof. It suffices to prove this for a cofinal family of finitely generated subring,
namely for the affine coordinate rings R of the affine curves Caf . Any ideal I
of R has the form {f : vpk(f) ≥ mk, k = 1, . . . ,m} for some p1, . . . , pk ∈ C(k)
and m1, . . . ,mk ∈ N. Since the localizations are regular local rings, and using
the Chinese remainder theorem, we may find g ∈ R with vpk(g) = mk. Now
g may have additional zeroes at some additional points q1, . . . , ql. But by the
independence of valuations, there exists h with vpi(h) ≥ mi and vqi(h) = 0. Now
it is clear that g, h generate I. The second statement is proved in the same
way. �

Let C be a curve along with a dominant morphism to P1
k (corresponding to an

element of the index set I.) Let B(C) be the Boolean algebra of finite or cofinite
subsets of Caf (k), Bf (C) the ideal of finite subsets, D(C) the group of functions
C(k)→ Z with support in Caf .

Let Div(C) be the free Abelian group on C(k), viewed as the group of functions
C(k) → Z with finite support. Div0(C) the subgroup of elements of coefficient
sum 0, and J(C) the Jacobian of C, quotient of Div0(C) by the principal divisors.
Let ρ = ρC : Div0(C)→ J(C) be the natural map.

For b ∈ Bf (C), let b∗ be the finite subset of C(k) consisting of b along with the
points at ∞, b∗ = (C(k) r Caf (k)) ∪ b.
Div(C)b be the free Abelian group on b∗, and let Jb(C) = ρ(Div0(C)∩Div(C)b).
Let H(C) = J(C)/J0(C). Then ρ induces a homomorphism ρ : D(C)→ H(C):

choose some element of Div0(C) extending a given d ∈ D(C), and map d to the
image under ρ of that element; this is well-defined modulo J0(C). Let Dpr(C)
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denote the kernel of ρ : D(C)→ H(C); it is the group of affine divisors (f)af of
elements f of i, (f)af (p) := vp(f), vp being the valuation corresponding to p. So
we have an exact sequence:

0→ Dpr(C)→ D(C)→ H(C)→ 0

Consider now a pair i ≤ j ∈ I.
There is a natural map

(1) pij : D(Ci)→ D(Cj), d 7→ pij(d), pij(d)(q) = r(q)d(q|ki)
where r(q) is the ramification degree of j over i with respect to the valuation q.

This is a homomorphism of partially ordered groups. The multiplicities are
defined so as to have, for any f ∈ i = k(Ci),

pij(f)af = (f ◦ pji)af
so pij(Dpr(Ci)) ⊆ Dpr(Cj). Thus pij also induces a homomorphism

(2) pij : H(Ci)→ H(Cj)

Finally, we have a natural embedding pij : Bf (Ci) → Bf (Cj), the pullback; it
is compatible with pij : D(Ci) → D(Cj) and the support maps supp : D(Ci) →
Bf (Ci), taking an element to its support.

Let B,Bf , D,H, J,Hb be the direct limits along I of B(Ci),Bf (Ci), D(Ci), H(Ci), J(Ci).
The transition maps from i to j are (1),(2), and supp ◦ pij : Bi,af → Bj,af . B is a
Boolean algebra with maximal ideal Bf . These direct limits come with the maps
pi∞ : D(Ci)→ D, pi∞ : J(Ci)→ J , etc.

Lemma 2.2. J and H are torsion-free divisible abelian groups; so are the Hb

Proof. Let us show that J is torsion-free. We have to show that for any i, with
C = Ci, any torsion element of J(C) maps to 0 in J(C ′) for an appropriate
covering curve C ′ → C. Let τ ∈ Div0(C) represent a torsion element of J(C); so
there is a function f ∈ k(C) with (f) = mτ . Let j = i(g) with gm = f . Then
(gm) = mpij(τ) so (g) = pij(t), thus τ pulls back to 0 in J(C ′).

A similar argument works for H, and more generally for J/Jb, for any b ∈ Bf .
In this case we have (f) = mτ + υ with υ supported above b, and so (g) = τ + υ′

with υ′ still supported above b.
Each J(C) and H(C) is already divisible, hence J and H are divisible. Since

H/Hb = J/Jb is torsion-free, it follows that Hb is divisible too. �

We thus view J,H,Hb as Q-vector spaces.
We remark that D is also a Q-vector space. Each D(C) is torsion-free, hence

so is D. And any element of D attains an n’th root with the same support in
some (sufficiently ramified) covering.

We will keep in mind that at the limit we are working with Q-vector spaces,
so that our interest in the approximations H(C) will always be modulo torsion.
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We fix an element of I corresponding to a curve C1, and denote it by 1; the
corresponding function field is k1. We may take C1 to be an elliptic curve; this
is not essential but will simplify notation in Lemma 2.7, and will suffice for
interpreting Q with parameters from F (t)alg, F being the prime field.

We consider from now on only elements j ∈ I with j ≥ 1.
For any j ≥ 1 we also have a morphism in the opposite direction,

p1j∗ : D(Cj)→ D(C1), p1j∗(e)(p) =
∑

q|k1=p
r(q)e(q)

Note that p1j∗p1j is multiplication by n = [kj : k1].
We have induced homomorphisms between J(Cj) and J(C1), as well as H(Cj)

and H(C1) denoted by the same letters. We still have p1j∗p1j = [·n] with n =
[kj : k1]. Thus on H(Cj) we have ker p1j∗ ∩ Im(p1j) torsion. On the other hand
ker p1j∗ + Im(p1j) = H(Cj) (as in Lemma 2.6 below.) Note that for j ≤ k,
pjk(ker p1j∗) ⊂ ker p1k∗. Let H1 = p1∞(H(C1)) ∼= Q⊗H(C1) be the image of
H(C1) in H, and let H1

⊥ = limj ker p1j∗ . Then H1
⊥, H1 are complementary

Q-subspaces of H.
Fix b ∈ Bf . An element of H has many representatives in D. We let H(b)

be the set of elements of H having some representative supported on b. More
formally:

Definition 2.3. For b ∈ Bf (Ci), i ≤ j, let H(j; b) = ρ(D(j; b)), where D(j; b) is
the set of elements of D(Cj) supported on (a subset of) supp pijb.

The H(j; b) (or their pullbacks to the Jacobian of Cj) are our fundamental
geometric objects. We have already considered H(Cj), which is the limit of
H(j; b) over all b ∈ Bf (Ci).

For fixed b ∈ Bf (Ci) we now consider H(b) be the limit of the H(j; b) over j.
This is a Q-subspace of H. 1

Lemma 2.4. Let k be a finitely generated field of positive Kronecker dimension.
Let C,D be pointed curves over k, and p : D → C a finite morphism of degree
> 1. Let A = J(C), B = J(D) be the Jacobians. We have a dominant morphism∑

: Cg → A, where g is the genus of C. Let a ∈ A(k), d ∈ B(kalg). Then there
exist b = (b1, . . . , bg) and c = (c1, . . . , cg) in C(kalg)g such that (

∑
bi)+a = (

∑
ci),

and Aut(kalg/k(a, b, c, d)) acts transitively on p−1(bi), as well as on p−1(ci)), for
each i ≤ g.

Proof. Let p1 : C → P1 be a dominant morphism. Let k′ = k(b′1, . . . , b
′
g) with

b′ = (b′1, . . . , b
′
g) a generic element of Cg. Let t′i = p1(b

′
i); then k(t′1, . . . , t

′
g) is a

purely transcendental extension of k. Let c = (c′1, . . . , c
′
g) ∈ C(k′)g be such that∑

b′i + a =
∑
c′i.

1 There will be no risk of confusion, as finite sets and curves are denoted by different letters,
such as b and C.
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If e′i, e′′i ∈ p−1(bi), then (e′1, . . . , e
′
g) is a generic element of Dg over k(d) as is

(e′′1, . . . , e
′′
g); so there exists a field automorphism fixing k(d) and taking each ei 7→

e′′i ; this field automorphism fixes k(b′, c′, d). Similarly, Aut(k(b′, c′, d)alg/k(b′, c′, d)
acts transitively on each p−1(c′i).

Let L′ be a finite normal field extension of k(t′1, . . . , t
′
g) with d ∈ B(L′), and

such that:
(1) Each b′i and c′i lie in L′; we have b′i + a = c′i, and p1(b

′
i) = ti; d ∈ L;

moreover,
(2) all elements of D(k(t′1, . . . , t

′
g)
alg) lying above some b′i or c′i, belong to L′.

(3) Aut(L′/k(b′, c′, d) acts transitively on each p−1(bi) and p−1(ci).
By [1] Theorem 13.4.2, k is a Hilbertian field, and in fact we may embed

k(t′1, . . . , t
′
g) in an elementary extension k∗ of k, in such a way that k∗ is a regular

field extension of k(t′1, . . . , t
′
g), i.e. it is linearly disjoint from k(t′1, . . . , t

′
g)
alg over

k(t′1, . . . , t
′
g). It follows that the compositum L′k∗ is a normal extension of k∗

with automorphism group G = Aut(L′k∗/k∗) = Aut(L′/k(t′1, . . . , t
′
g).

Recall the the set of field extensions of a given degree of any field is interpretable
in it; applying this to L′k∗/k∗, it is easy to write a formula ψ(u1, . . . , ug) such
that k∗ |= ψ(t′1, . . . , t

′
g), and such that ψ asserts the existence of a finite field

extension having the properties above. Since k ≺ k∗, there exist t1, . . . , tg ∈ k
with k |= ψ(t1, . . . , tg); hence there exist a finite field extension L and elements
bi, ci ∈ B(L) having the properties (1-3) above.

�

2.5. The subspaces H(b). Say b = {β1, . . . , βk} ⊂ C1(k). Let H1(b) be the
subspace of H generated by the images of β1, . . . , βk. Let H⊥1 (b) be the subspace
of H generated by the differences x−y where pj1(x) = pj1(y) = βi for some i ≤ k.
Note that H1(b) ≤ H1, while H⊥1 (b) ≤ H1

⊥.

Lemma 2.6. H(b) = H1(b)⊕H⊥1 (b) .

Proof. The sum is direct sinceH1∩H1
⊥ = 0. To show thatH1(b)⊕H⊥1 (b) = H(b),

consider an element of D(Cj) supported above b. It is a linear combination
of singleton elements of Cj, supported above some β = βl. So it suffices to
show that such an e lies in H1(b) + H⊥1 (b). Say n = [Cj : C1]. Then ne =
p1j(β) − ∑

pj1(y)=β(y − e), and each y − e ∈ H⊥1 (b). This exhibits ne as the
difference of an element of H1(b) and one of H⊥1 (b). Since by definition these are
Q-subspaces, we have also e ∈ H1(b) +H⊥1 (b). �

We now take a closer look at the interaction of the subspaces H(b).

Lemma 2.7. Assume C1 has genus one, and k = kalg has positive Kronecker
dimension. Fix j; so we have a covering p = pj : Cj → C1.

Let β1 ∈ C1(k). Then there exists β2 ∈ C1(k) such that, letting β3 = β1 − β2,
statements (1-3) below hold.
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(1) H(j; β1) ∩ (H⊥1 (j; β2) +H⊥1 (j; β3)) is torsion.
(2) H⊥1 (j; β1) ∩ (H(j; β2) +H(j; β3)) is torsion.
(3) pj∞H⊥1 (j; β1) ∩ (H(β2) +H(β3)) = (0)

Proof. Wemay choose a finitely generated subfield k0 of k such that k0 has positive
Kronecker dimension, Cj, C1, p are defined over k0, and β1 ∈ C1(k0), as are the
points δ of C1 above ∞ =∞t’.

Let A = C1 = J(C1) and let B = J(Cj) be the Jacobian variety of Cj. Choose
β1 as in Lemma 2.4 (with respect to a = β1, D = Cj, b an enumeration of p−1(a),
in the notation of that lemma; note here g = 1.)

Let a1 ∈ B(k) represent an element ofH(j; β1); in other words, a1 is represented
by a cycle on Cj whose support lies about δ ∪ β1. Let a1 = a2 + a3 such that for
i = 2, 3, we have ai supported above δ ∪ βi, and p(ai) is supported above δ. We
have to show that a1 is torsion, modulo points supported above δ.

Note that a1 ∈ B(kalg0 ), since δ ∪ β1 ⊂ Cj(k
alg
0 ), and a1 is supported on points

above this finite set.
Let K = kalg0 (β2) = kalg0 (β3), L the Galois hull over K of K(a2) = K(a3), and

G = Aut(L/K), m = |G|. Then G acts on B(L) and on A(L), and we have a
trace map (sum of conjugates) tr : B(L) → B(K). Since G fixes a1 we have
tr(a1) = ma1. On the other hand for i = 2, 3, any two elements of p−1j1 (βi) are
Aut(L/K)-conjugate; thus their difference has G-trace zero. Since a2 and a3 are
sums of such differences, and points lying above δ, we have tr(a2) and tr(a3)
supported above δ. Thus so is ma1. This proves (1).

We now deduce (2,3) from (1).
For (2), assume a1 ∈ H⊥1 (j; β1). We apply the operator Id − p1jpj1∗; it leaves

a1 fixed since a1 ∈ H⊥1 (j; β1), so that pj1∗(a1) = 0; and takes a2, a3 to elements
of H⊥1 (j; βi), so that the previous paragraph applies.

The last point, (3), amounts to saying, for any j′ ≥ j, that

pjj
′
H⊥1 (j; β1) ∩ (H(j′; β2) +H(j′; β3))

is torsion. Let a1 ∈ H⊥1 (j; β1), ai ∈ H(j′; βi) for i = 2, 3 and suppose pjj′(a1) =
a2 + a3. Applying pj′j∗, and using that pj′j∗pjj

′
(a1) = da1 for appropriate d, we

see that da1 ∈ H(j; β2) +H(j; β3) so a1 is torsion.
�

Observe that Lemma 2.7 (3) implies that for any j′ ≥ j, pjj′H⊥1 (j; β1) ∩
(H(j′; β2) + H(æ′; beta3)) = (0), but does not go as far as asserting the same
of H⊥1 (j′; β1) ∩ (H(j′; β2) + H(j′; β3)). This is because even if β1 is chosen to be
generic over k0, it cannot be chosen generic over all j′.

Example 2.8. Let C be a smooth projective curve over k. Let a1, . . . , al be
points of C(k), such that some f ∈ k(C) has simple zeroes at the ai and no other
zeroes. Then there exists a (ramified) double covering p : E → C and points
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bi, ci ∈ p−1(ai) with distinct images in Q⊗J(E), such that ∑
bi =

∑
ci in J(E).

Thus the groups H(ai)
⊥
1 are not in direct sum.

Proof. Choose a projective embedding of C, and find homogeneous polynomials
f0, f1 such that f = f0/f1 on C. Choose α ∈ k such that 4αf 2 − 1 has distinct
roots in C, so that it is not a perfect square in k(C). Define E ≤ C × P1 by the
equation:

f0(x)y21 + f1(x)y1y0 + αf0(x)y20 = 0

Because of the condition on the discriminant, E is an irreducible curve. Let
π : E → C be the projection (x, y) 7→ x. Consider the poles and zeroes of y1/y0
on E, i.e. the zeroes of y1 and of y0. When f1(x) = 0 we may divide by f0(x) to
obtain y1 = ±

√
αy0, two points that are not poles or zeroes of y1/y0. Thus we

may restrict to f1(x) 6= 0 and write

f(x)y21 + y1y0 + αf(x)y20 = 0

When f(a) = 0 we find the equation y1y0 = 0, giving a pole and a zero of y lying
above a; it is easy to check that E is smooth at these points, so these still give
one pole and one zero of the normalization ‹E of e. When f(a) 6= 0 we see that
y1/y0 is integral over k so it has no poles over a. Passing to the normalization of
E, we find no new poles, so we have a simple pole bi and a zero ci above each ai,
and as there are no further poles, there can be no further zeroes either. �

Notably, the hypothesis applies to almost all l-tuples a1, . . . , al if l is at least
than the genus of C. By considering b1−c1 = b2−c2 we see that H(a1)∩H(a2) 6=
(0) even when a1, a2 are independent generics of a rational or elliptic curve.

3. Interpreting the rational field

We consider the structure S consisting of the Boolean algebra B, the ideal Bf ,
the partially ordered group D, the support map D → Bf , the group H and the
homomorphism ρ : D → H.

The following interpretation is implicit in [4] and [3].

Lemma 3.1. (cf. [4]) S can be interpreted in k[t]int.

Proof. Let A = k[t]int. The interpretation hinges on the interplay between
ideals and radical ideals. Finitely generated ideals are uniformly definable as
by Lemma 2.1 they are all 2-generated. As for radicals: since all prime ideals of
A are maximal, the radical of an ideal, intersection of all prime ideals containing
it, coincides with the Jacobson radical; the standard formula for the Jacobson
radical of a definable ideal I shows that

√
I is definable too.

Bf can be identified with the set of radicals of finitely generated ideals of k[t]int.
Intersection in Bf corresponds to the radical of the sum of ideals; union to the
intersection. The difference of two elements of Bf corresponds to the operation
of (radical) ideals, mapping (I, J) to {x : Jx ⊂ I}. Given Bf with this structure,
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the Boolean algebra B can be easily interpreted by adding a formal element 1
and defining the obvious structure on Bf ∪ {1− a : a ∈ Bf}.

Let D+ be the semigroup of non-negative elements of D. Define a map α :
A2 → D+, α(a, b)(p) = min(vp(a), vp(b)); more precisely, define this at the level
of each sufficiently large field i of the limit system, and check compatibility. By
Lemma 2.1, α is surjective. We have to show that equality and the ordered group
operations +,min pull back to definable sets on A4. Indeed min corresponds to the
sum of ideals, i.e. α(a′′, b′′) = min(α(a, b), α(a′, b′)) iff A(a, b, a′, b′) = A(a′′, b′′).
Equality corresponds to equality of ideals. + corresponds to product of ideals.
The lattice-ordered group D is now easily definable as the set of differences a− b
with a, b ∈ D+.

Observe that D is interpreted along with the structural map α : A2toD+ ⊆ D.
In particular we can define β(a) = α(a, a) so that β(a)(p) = vp(a). We define H
as D modulo the image of β.

The support map D → Bf is obtained by factoring through D the map A2 →
Bf , taking (a1, a2) to the radical ideal generated by a1, a2.

�

Assume k has positive Kronecker dimension

Lemma 3.2. Assume C1 has genus 1. There exists a formula φ(x, y) such that
for any a ∈ H1, φ(x, a) defines Qa (a subspace of H.)

Proof. We have a definable family Ξ1 of Q-subspaces of H, namely all the ones
of the form H(b) for b ∈ Bf .

So Ξ = {U + V : U, V ∈ Ξ1} is also a uniformly definable family (actually
Ξ = Ξ1 since H(b ∪ b′) = H(b) +H(b′).)

For a ∈ H, let Φ(a) denote the intersection of all U ∈ Ξ with a ∈ U . So Φ(a)
is definable uniformly in a; it is a Q-space; and a ∈ Φ(a). If a ∈ H(C1), we also
write Φ(a) for Φ(ā) where ā = p1∞(a). Moreover we write H(a) for H(π1∞({a})).
Claim . Let a ∈ H(C1). Then Φ(a) = Qā.

Let Cj → C1 be some other curve, covering C1. Let b ∈ H(Cj), supported
over (the support of ) a, but such that there are no nonzero m,m′ ∈ Z with
ma + m′b = 0; i.e. b̄ is not a rational multiple of ā. We have to show that
b̄ /∈ Φ(a).

Let a′ ∈ C1 be generic (over a, b and a base of definition for Cj), and let
a”=a+a’. Then a ∈ H(a′) +H(a′′). So we are done if we show

(*) b /∈ H(a′) +H(a′′).
(*) follows by combining Lemma 2.6 and Lemma 2.7. Suppose b = b′+ b′′, with

b′ ∈ H(a′) and b′′ ∈ H(a′′). By Lemma 2.6 may subtract a scalar multiple of a
from b, so as to have b ∈ pj∞H⊥1 (j; a). But then by Lemma 2.7 we have b = 0,
contradicting that it is not a multiple of a. �
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Proof of Theorem 1.1: interpreting Q with parameters. One can interpret a
2-dimensional vector space V over Q, with the family of all subspaces of V .
Choose a1, a2 linearly independent in H(C1). Let V = Qa1 + Qa2. Then V
is definable, since + is definable on H. Now letting b vary and considering
φ(x, b) ∩ V , we obtain a family of subspces of V, including all one-dimensional
subspaces of V .

It is easy to interpret Q in such a vector space, with a distinguished basis. 2

Now (N,+, ·) is interpretable by a theorem of J. Robinson, using the theory of
quadratic forms over Q.

Undecidability of (k[t]int,+, ·) follows: Let T0 be a non-recursive finitely ax-
iomatizable theory, true in (N,+, ·). Let Nu be a uniformly definable family
of rings in k[t]int, including at least one copy of (N,+, ·). Then T0 ` θ iff
k[t]int |= (∀u)(Nu |= ψ → θ). So Th(k[t]int) cannot be recursive.

�

3.3. Extensions. The use of an elliptic curve C1 was convenient, but not neces-
sary. To see this let g be the genus of C1, and let us drop the assumption that
g = 1.

Lemma 2.7 can be generalized as follows.

Lemma 3.4. Let p = pj : Cj → C1 be defined over a subfield k0 of k. Let
β1,1, . . . , β1,m ∈ C1(k0), let β2,1, . . . , β2,g be g elements of C1 that are algebraically
independent over k0, and let β3,1, . . . , β3,g be elements of C1 such that in the
Jacobian J1 we have

m∑
ν=1

β1,ν =
g∑

µ=1

β2,µ +
g∑

µ=1

β3,µ

Then
pj∞H⊥1 (j; β1) ∩ (H(β2) +H(β3)) = (0)

The proof is the same as of Lemma 2.7.
Using Lemma 3.4 in place of 2.7, the proof of Lemma 3.2 goes through for

C1 of any genus g, and thus for any curve Cj as well. We thus have, with no
assumptions of genus:

Lemma 3.5. Assume k has positive Kronecker dimension. There exists a formula
φ(x, y) such that for any i and any a ∈ Hi, φ(x, a) defines Qa (a subspace of H.)

2This is related to the fundamental theorem of projective geometry, but is an especially basic
case, underlying the algebrization of Euclid by Descartes, [?]. We can take the universe of Q to
be the x-axis, i.e. the line through (0, 0) and (1, 0). The bijection with the y axis can be defined
by mapping a to b if the line through (a, b) is parallel to the line through the basis elements
(1, 0), (0, 1). Multiplication x · y can be defined by considering lines parallel to the one through
(x, 0) and (0, 1), and passing through (0, y). By means of parallelograms it is easy to define
when two segments on the x-axis have equal length, and then we immediately define addition.
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In fact there is a simpler argument giving a stronger result, at least when the
transcendence degree of k is infinite.

Lemma 3.6. Assume k has infinite transcendence degree over the prime field.
. There exists a formula φ(x, y) such that for any a ∈ H, φ(x, a) defines Qa (a
subspace of H.)

Proof. �

It follows that the various copies of Q we interpreted are all definably iso-
morphic ( by embedding the two 2-dimensional geometries in a bigger one of
dimension ≤ 4).

Proof of Theorem 1.1, interpreting Q in (k[t]int,+, ·, t) without additional parameters.
We have found a finite definable class P of parameters, such that for any c ∈ P
which we obtain uniformly a field Kc isomorphic to Q, and such for any c, c′ ∈ P
we obtain (with further parameters, by embedding the two 2-dimensional
geometries in a bigger one of dimension ≤ 4) an isomorphism Kc → Kc′ . In this
situation, by Remark 3.7 below, a copy of Q may also be interpreted without
parameters. �

The next lemma is valid in any structure.

Remark 3.7. Assume:
(1) P is a definable set
(2) For c ∈ P , we have an interpretable structure Zc in some finite language

L, given uniformly in c.
(3) For c, d ∈ P (and uniformly in c, d) there exists an isomorphism Zc → Zd,

definable possibly with additional parameters.
(4) Each Zc has trivial automorphism group.
Then there exists a structure Z interpretable without parameters, and isomor-

phic to each Zc.
Proof: Let Z = {(a, z) : a ∈ P, z ∈ Zc}/E, where E is the equivalence relation:

(c, y)E(d, z) iff there exists a definable isomorphism Zc → Zd with y 7→ z.
By assumption, for some formula φ(u, v, w, x, y), for any c, d ∈ P , for some e,

φ(c, d, e, x, y) defines an isomorphism Zc → Zd. Let IS(c, d) be the (nonempty,
definable) set of all e such that φ(c, d, e, x, y) defines an isomorphism Zc → Zd.
Note that (c, f)E(d, g) iff for all e ∈ IS(c, d) we have φ(c, d, e, f, g). Indeed if
α : Zc → Zd is an isomorphism with α(f) = g, let e ∈ IS(c, d) and let α′ be
the isomorphism Zc → Zd defined by φ(c, d, e, x, y); then by uniqueness of the
isomorphism Zc → Zd assumed in (4), we have α = α′ so φ(c, d, e, f, g) holds.
The other direction is clear.

Hence, E is definable.
Now pick c ∈ P ; define fc : Zc → Z by fc(z) = (c, z)/E. Clearly fc is a

bijection Zc → Z. Moreover, by definition of E, for any c, d ∈ P we have that
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f−1d ◦ fc : Zc → Zd is an isomorphism. Hence there exists a unique L-structure
on Z such that each fc is an isomorphism.

Question 3.8. Consider the structure S described above; view the support rela-
tion on H ×B as a basic relation (asserting of (h, b) that there exists d ∈ D with
ρ(d) = h and supported on b.) Is the universal theory of S decidable? With pa-
rameters allowed, the formula defining Qc is universal: x ∈ Qc iff for all b ∈ B, if
c is supported on b then so is x. From this it follows formally that a 2-dimensional
Q-vector space Qc1 + Qc2 is defined by an ∃∀-formula; but it seems likely that
is can also be defined by a universal formula, perhaps stating that any supports
for the ci also jointly support x. One can guess that the field Q can also be
interpreted by means of universal formulas.

Question 3.9. Can we also interpret Q within Bf? Here example 2.8 is relevant.
Let Bdep(C) be the set of finite subsets of C, whose image in Q⊗H(C) is Q+-
linearly dependent. For i ≤ j, note Bdep(Ci) = (pij)−1Hdep(Cj). It is clear that
the image of a dependent set is dependent. Conversely the norm of a function
showing dependence of a full pullback on Cj, will already show dependence on Ci.
Let Bdep ⊂ Bf be the limit of these sets. We can easily interpret Q in (C,Bf , Bdep)
for a fixed C, at least.

Question 3.10. Can one understand the theory of the ring k[t]int relative to
B, H?

Question 3.11. The theory of k[t]int depends at most on the characteristic of k,
and on the transcendence degree over the prime field. Does it in fact depend on
the latter?

This could be the case if one can understand the theory of k[t]int relative to the
scalar field Q. On the other hand if the constant field k is definable, the answer is
yes and one has a strong form of undecidability by interpreting all finite subsets
of k.
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