THE THEORY OF THE ENTIRE ALGEBRAIC FUNCTIONS

TAYLOR DUPUY AND EHUD HRUSHOVSKI

Abstract

Let A be the integral closure of the polynomials withing the ring of algebraic functions in one variable. We show that A interprets the ring of integers.

1. Introduction

For an integral domain A, let $A^{\text {int }}$ denote the integral closure of A within the algebraic closure of the field of fractions of A. Thus $\mathbb{Z}^{\text {int }}$ is the ring of algebraic integers. Our motivation is the theorem of [3], that the theory of $\mathbb{Z}^{\text {int }}$ is decidable (see also [4], 2].) There is a well-established analogy, going back to Leibniz and Euler, between integers and polynomials; rational numbers and rational functions; algebraic numbers and algebraic functions. The analogue of $\mathbb{Z}^{\text {int }}$ would appear to be $\mathbb{C}[t]^{i n t}$, the ring of algebraic functions that are entire, i.e. holomorphic as functions on the associated Riemann surface. It is thus natural to ask as to the decidability of this ring. The answer turns out to go the other way:

Theorem 1.1. Let k be a field of positive Kroneker dimension. Let $\mathrm{k}[t]^{\text {int }}$ be the integral closure of $\mathrm{k}[t]$ in $\mathrm{k}(t)^{\text {alg }}$. Then $\operatorname{Th}\left(\mathrm{k}[t]^{\text {int }},+, \cdot, t\right)$ interprets $\operatorname{Th}(\mathbb{N},+, \cdot)$. In particular, $\left(\mathrm{k}[t]^{\text {int }},+, \cdot\right)$ is undecidable.

Recall that the Kronecker dimension Kr.dim. (k) of a field k is defined to be 0 for a finite field $k, 1$ for $k=\mathbb{Q}$, and in general $\operatorname{Kr} \cdot \operatorname{dim} .(k):=\operatorname{Kr} \cdot \operatorname{dim}(F)+$ tr.deg.F (k), where F is the prime field of k. Thus the only fields k left out are those algebraic over a finite field. In fact for such fields, it was proved in [4] that $\mathrm{k}[t]^{\text {int }}$ is is decidable.

In the finite field case, the first and fundamental principle is is that of glueing. Given finitely many primes p_{1}, \ldots, p_{k} of $\mathrm{k}(t)$, and elements a_{1}, \ldots, a_{k} of $\mathrm{k}[t]$, in some finite extension L it is possible to find an integer that is close to a_{i} at primes above p_{i}, and a unit at any other prime. This is no longer possible when k is a non-algebraic field; the obstruction to glueing on $\mathrm{k}(C)$ in this sense is measured by the Jacobian of C up to torsion, and related \mathbb{Q}-vector spaces. An interesting structure becomes interpretable, consisting of the direct limit of all Jacobians, along with a filtration according to supports. However, the field of coefficients \mathbb{Q} turns out to be interpretable within it. It remains a very interesting open problem to find a decidable setting capturing the essential geometry here.

Throughout this paper, k is a field of positive Kronecker dimension. Note that in Theorem 1.1 we may assume k is algebraically closed, since changing k to $\mathrm{k}^{a l g}$ does not change the ring $\mathrm{k}[t]^{i n t}$.

2. Definable systems of class groups

Let k be an algebraically closed field. Fix an algebraic closure $\mathrm{k}(t)^{\text {alg }}$ of the field of rational functions $\mathrm{k}(t)$. Let $\mathrm{k}[t]^{\text {int }}$ be the integral closure of $\mathrm{k}[t]$ in $\mathrm{k}(t)^{\text {alg }}$. Let \mathcal{J} be the set finite extension fields of $\mathrm{k}(t)$, contained in $\mathrm{k}(t)^{\text {alg }}$. This is a directed partially ordered set, under inclusion. Each $i \in \mathcal{J}$ is the function field of a smooth projective curve C_{i}, over k (we will also denote this field by k_{i}.) Given $i \leq j \in \mathcal{J}$ there is a unique morphism $p_{j i}: C_{j} \rightarrow C_{i}$ of curves, corresponding to the given inclusion of function fields; the $p_{j i}$ form a directed system. The smallest element, with function field $\mathrm{k}(t)$, is $C_{0} \cong \mathbb{P}^{1}$. We fix an element $\infty_{t} \in C_{0}(\mathrm{k})$, the pole of t. For any i, if $C=C_{i}$ denote $C_{a f}=C_{i, a f}=C \backslash p_{i 0}^{-1}\left(\infty_{t}\right)$.

Lemma 2.1. Any finitely generated ideal of $\mathrm{k}[t]^{\text {int }}$ is 2-generated as an ideal. For any curve C, any function $C_{a f}(\mathrm{k}) \rightarrow \mathbb{N}$ with finite support has the form $p \mapsto \min \left(v_{p}(f), v_{p}(g)\right)$ for some $f, g \in \mathrm{k}[t]^{\text {int }}$.
Proof. It suffices to prove this for a cofinal family of finitely generated subring, namely for the affine coordinate rings R of the affine curves $C_{a f}$. Any ideal I of R has the form $\left\{f: v_{p_{k}}(f) \geq m_{k}, k=1, \ldots, m\right\}$ for some $p_{1}, \ldots, p_{k} \in C(\mathrm{k})$ and $m_{1}, \ldots, m_{k} \in \mathbb{N}$. Since the localizations are regular local rings, and using the Chinese remainder theorem, we may find $g \in R$ with $v_{p_{k}}(g)=m_{k}$. Now g may have additional zeroes at some additional points q_{1}, \ldots, q_{l}. But by the independence of valuations, there exists h with $v_{p_{i}}(h) \geq m_{i}$ and $v_{q_{i}}(h)=0$. Now it is clear that g, h generate I. The second statement is proved in the same way.

Let C be a curve along with a dominant morphism to \mathbb{P}_{k}^{1} (corresponding to an element of the index set \mathcal{J}.) Let $\mathbb{B}(C)$ be the Boolean algebra of finite or cofinite subsets of $C_{a f}(\mathrm{k}), \mathbb{B}_{f}(C)$ the ideal of finite subsets, $D(C)$ the group of functions $C(\mathrm{k}) \rightarrow \mathbb{Z}$ with support in $C_{a f}$.

Let $\operatorname{Div}(C)$ be the free Abelian group on $C(\mathrm{k})$, viewed as the group of functions $C(\mathrm{k}) \rightarrow \mathbb{Z}$ with finite support. Divo (C) the subgroup of elements of coefficient sum 0 , and $J(C)$ the Jacobian of C, quotient of $D_{0}(C)$ by the principal divisors. Let $\rho=\rho_{C}: \operatorname{Div}_{0}(C) \rightarrow J(C)$ be the natural map.

For $b \in \mathbb{B}_{f}(C)$, let b^{*} be the finite subset of $C(\mathrm{k})$ consisting of b along with the points at $\infty, b^{*}=\left(C(\mathrm{k}) \backslash C_{a f}(\mathrm{k})\right) \cup b$.
$\operatorname{Div}(C)_{b}$ be the free Abelian group on b^{*}, and let $J_{b}(C)=\rho\left(\operatorname{Div}_{0}(C) \cap \operatorname{Div}(C)_{b}\right)$.
Let $H(C)=J(C) / J_{0}(C)$. Then ρ induces a homomorphism $\rho: D(C) \rightarrow H(C)$: choose some element of $\operatorname{Div}_{0}(C)$ extending a given $d \in D(C)$, and map d to the image under ρ of that element; this is well-defined modulo $J_{0}(C)$. Let $D_{p r}(C)$
denote the kernel of $\rho: D(C) \rightarrow H(C)$; it is the group of affine divisors $(f)_{a f}$ of elements f of $i,(f)_{a f}(p):=v_{p}(f), v_{p}$ being the valuation corresponding to p. So we have an exact sequence:

$$
0 \rightarrow D_{p r}(C) \rightarrow D(C) \rightarrow H(C) \rightarrow 0
$$

Consider now a pair $i \leq j \in \mathcal{J}$.
There is a natural map

$$
\begin{equation*}
p^{i j}: D\left(C_{i}\right) \rightarrow D\left(C_{j}\right), \quad d \mapsto p^{i j}(d), \quad p^{i j}(d)(q)=r(q) d\left(q \mid k_{i}\right) \tag{1}
\end{equation*}
$$

where $r(q)$ is the ramification degree of j over i with respect to the valuation q.
This is a homomorphism of partially ordered groups. The multiplicities are defined so as to have, for any $f \in i=\mathrm{k}\left(C_{i}\right)$,

$$
p^{i j}(f)_{a f}=\left(f \circ p_{j i}\right)_{a f}
$$

so $p_{i j}\left(D_{p r}\left(C_{i}\right)\right) \subseteq D_{p r}\left(C_{j}\right)$. Thus $p^{i j}$ also induces a homomorphism

$$
\begin{equation*}
p^{i j}: H\left(C_{i}\right) \rightarrow H\left(C_{j}\right) \tag{2}
\end{equation*}
$$

Finally, we have a natural embedding $p^{i j}: \mathbb{B}_{f}\left(C_{i}\right) \rightarrow \mathbb{B}_{f}\left(C_{j}\right)$, the pullback; it is compatible with $p^{i j}: D\left(C_{i}\right) \rightarrow D\left(C_{j}\right)$ and the support maps supp : $D\left(C_{i}\right) \rightarrow$ $\mathbb{B}_{f}\left(C_{i}\right)$, taking an element to its support.

Let $\mathbb{B}, \mathbb{B}_{f}, D, H, J, H_{b}$ be the direct limits along \mathfrak{J} of $\mathbb{B}\left(C_{i}\right), \mathbb{B}_{f}\left(C_{i}\right), D\left(C_{i}\right), H\left(C_{i}\right), J\left(C_{i}\right)$. The transition maps from i to j are (1), (2), and supp $\circ p_{i j}: B_{i, a f} \rightarrow B_{j, a f}$. \mathbb{B} is a Boolean algebra with maximal ideal \mathbb{B}_{f}. These direct limits come with the maps $p^{i \infty}: D\left(C_{i}\right) \rightarrow D, p^{i \infty}: J\left(C_{i}\right) \rightarrow J$, etc.

Lemma 2.2. J and H are torsion-free divisible abelian groups; so are the H_{b}
Proof. Let us show that J is torsion-free. We have to show that for any i, with $C=C_{i}$, any torsion element of $J(C)$ maps to 0 in $J\left(C^{\prime}\right)$ for an appropriate covering curve $C^{\prime} \rightarrow C$. Let $\tau \in \operatorname{Div}_{0}(C)$ represent a torsion element of $J(C)$; so there is a function $f \in \mathrm{k}(C)$ with $(f)=m \tau$. Let $j=i(g)$ with $g^{m}=f$. Then $\left(g^{m}\right)=m p^{i j}(\tau)$ so $(g)=p^{i j}(t)$, thus τ pulls back to 0 in $J\left(C^{\prime}\right)$.

A similar argument works for H, and more generally for J / J_{b}, for any $b \in \mathbb{B}_{f}$. In this case we have $(f)=m \tau+v$ with v supported above b, and so $(g)=\tau+v^{\prime}$ with v^{\prime} still supported above b.

Each $J(C)$ and $H(C)$ is already divisible, hence J and H are divisible. Since $H / H_{b}=J / J_{b}$ is torsion-free, it follows that H_{b} is divisible too.

We thus view J, H, H_{b} as \mathbb{Q}-vector spaces.
We remark that D is also a \mathbb{Q}-vector space. Each $D(C)$ is torsion-free, hence so is D. And any element of D attains an n 'th root with the same support in some (sufficiently ramified) covering.

We will keep in mind that at the limit we are working with \mathbb{Q}-vector spaces, so that our interest in the approximations $H(C)$ will always be modulo torsion.

We fix an element of \mathcal{J} corresponding to a curve C_{1}, and denote it by 1 ; the corresponding function field is k_{1}. We may take C_{1} to be an elliptic curve; this is not essential but will simplify notation in Lemma 2.7 , and will suffice for interpreting \mathbb{Q} with parameters from $F(t)^{a l g}, F$ being the prime field.

We consider from now on only elements $j \in \mathcal{J}$ with $j \geq 1$.
For any $j \geq 1$ we also have a morphism in the opposite direction,

$$
p_{1 j *}: D\left(C_{j}\right) \rightarrow D\left(C_{1}\right), \quad p_{1 j *}(e)(p)=\sum_{q \mid k_{1}=p} r(q) e(q)
$$

Note that $p_{1 j_{*}} p^{1 j}$ is multiplication by $n=\left[k_{j}: k_{1}\right]$.
We have induced homomorphisms between $J\left(C_{j}\right)$ and $J\left(C_{1}\right)$, as well as $H\left(C_{j}\right)$ and $H\left(C_{1}\right)$ denoted by the same letters. We still have $p_{1 j *} p^{1 j}=[\cdot n]$ with $n=$ [$k_{j}: k_{1}$]. Thus on $H\left(C_{j}\right)$ we have $\operatorname{ker} p_{1 j *} \cap \operatorname{Im}\left(p^{1 j}\right)$ torsion. On the other hand $\operatorname{ker} p_{1 j *}+\operatorname{Im}\left(p^{1 j}\right)=H\left(C_{j}\right)$ (as in Lemma 2.6 below.) Note that for $j \leq k$, $p^{j k}\left(\operatorname{ker} p_{1 j *}\right) \subset \operatorname{ker} p_{1 k *}$. Let $H_{1}=p^{1 \infty}\left(H\left(C_{1}\right)\right) \cong \mathbb{Q} \otimes H\left(C_{1}\right)$ be the image of $H\left(C_{1}\right)$ in H, and let $H_{1}{ }^{\perp}=\lim _{j} \operatorname{ker} p_{1 j *}$. Then $H_{1}{ }^{\perp}, H_{1}$ are complementary \mathbb{Q}-subspaces of H.

Fix $b \in \mathbb{B}_{f}$. An element of H has many representatives in D. We let $H(b)$ be the set of elements of H having some representative supported on b. More formally:
Definition 2.3. For $b \in \mathbb{B}_{f}\left(C_{i}\right), i \leq j$, let $H(j ; b)=\rho(D(j ; b))$, where $D(j ; b)$ is the set of elements of $D\left(C_{j}\right)$ supported on (a subset of) $\operatorname{supp} p^{i j} b$.

The $H(j ; b)$ (or their pullbacks to the Jacobian of C_{j}) are our fundamental geometric objects. We have already considered $H\left(C_{j}\right)$, which is the limit of $H(j ; b)$ over all $b \in \mathbb{B}_{f}\left(C_{i}\right)$.

For fixed $b \in \mathbb{B}_{f}\left(C_{i}\right)$ we now consider $H(b)$ be the limit of the $H(j ; b)$ over j. This is a \mathbb{Q}-subspace of $H .{ }^{1}$

Lemma 2.4. Let k be a finitely generated field of positive Kronecker dimension. Let C, D be pointed curves over k, and $p: D \rightarrow C$ a finite morphism of degree >1. Let $A=J(C), B=J(D)$ be the Jacobians. We have a dominant morphism $\sum: C^{g} \rightarrow A$, where g is the genus of C. Let $a \in A(k), d \in B\left(k^{\text {alg }}\right)$. Then there exist $b=\left(b_{1}, \ldots, b_{g}\right)$ and $c=\left(c_{1}, \ldots, c_{g}\right)$ in $C\left(k^{\text {alg }}\right)^{g}$ such that $\left(\sum b_{i}\right)+a=\left(\sum c_{i}\right)$, and $\operatorname{Aut}\left(k^{a l g} / k(a, b, c, d)\right)$ acts transitively on $p^{-1}\left(b_{i}\right)$, as well as on $\left.p^{-1}\left(c_{i}\right)\right)$, for each $i \leq g$.
Proof. Let $p_{1}: C \rightarrow \mathbb{P}^{1}$ be a dominant morphism. Let $k^{\prime}=k\left(b_{1}^{\prime}, \ldots, b_{g}^{\prime}\right)$ with $b^{\prime}=\left(b_{1}^{\prime}, \ldots, b_{g}^{\prime}\right)$ a generic element of C^{g}. Let $t_{i}^{\prime}=p_{1}\left(b_{i}^{\prime}\right)$; then $k\left(t_{1}^{\prime}, \ldots, t_{g}^{\prime}\right)$ is a purely transcendental extension of k. Let $c=\left(c_{1}^{\prime}, \ldots, c_{g}^{\prime}\right) \in C\left(k^{\prime}\right)^{g}$ be such that $\sum b_{i}^{\prime}+a=\sum c_{i}^{\prime}$.

[^0]If $e_{i}^{\prime}, e_{i}^{\prime \prime} \in p^{-1}\left(b_{i}\right)$, then $\left(e_{1}^{\prime}, \ldots, e_{g}^{\prime}\right)$ is a generic element of D^{g} over $k(d)$ as is $\left(e_{1}^{\prime \prime}, \ldots, e_{g}^{\prime \prime}\right)$; so there exists a field automorphism fixing $k(d)$ and taking each $e_{i} \mapsto$ $e_{i}^{\prime \prime}$; this field automorphism fixes $k\left(b^{\prime}, c^{\prime}, d\right)$. Similarly, $\operatorname{Aut}\left(k\left(b^{\prime}, c^{\prime}, d\right)^{a l g} / k\left(b^{\prime}, c^{\prime}, d\right)\right.$ acts transitively on each $p^{-1}\left(c_{i}^{\prime}\right)$.

Let L^{\prime} be a finite normal field extension of $k\left(t_{1}^{\prime}, \ldots, t_{g}^{\prime}\right)$ with $d \in B\left(L^{\prime}\right)$, and such that:
(1) Each b_{i}^{\prime} and c_{i}^{\prime} lie in L^{\prime}; we have $b_{i}^{\prime}+a=c_{i}^{\prime}$, and $p_{1}\left(b_{i}^{\prime}\right)=t_{i} ; d \in L$; moreover,
(2) all elements of $D\left(k\left(t_{1}^{\prime}, \ldots, t_{g}^{\prime}\right)^{\text {alg }}\right)$ lying above some b_{i}^{\prime} or c_{i}^{\prime}, belong to L^{\prime}.
(3) $\operatorname{Aut}\left(L^{\prime} / k\left(b^{\prime}, c^{\prime}, d\right)\right.$ acts transitively on each $p^{-1}\left(b_{i}\right)$ and $p^{-1}\left(c_{i}\right)$.

By [1] Theorem 13.4.2, k is a Hilbertian field, and in fact we may embed $k\left(t_{1}^{\prime}, \ldots, t_{g}^{\prime}\right)$ in an elementary extension k^{*} of k, in such a way that k^{*} is a regular field extension of $k\left(t_{1}^{\prime}, \ldots, t_{g}^{\prime}\right)$, i.e. it is linearly disjoint from $k\left(t_{1}^{\prime}, \ldots, t_{g}^{\prime}\right)^{\text {alg }}$ over $k\left(t_{1}^{\prime}, \ldots, t_{g}^{\prime}\right)$. It follows that the compositum $L^{\prime} k^{*}$ is a normal extension of k^{*} with automorphism group $G=\operatorname{Aut}\left(L^{\prime} k^{*} / k^{*}\right)=\operatorname{Aut}\left(L^{\prime} / k\left(t_{1}^{\prime}, \ldots, t_{g}^{\prime}\right)\right.$.

Recall the the set of field extensions of a given degree of any field is interpretable in it; applying this to $L^{\prime} k^{*} / k^{*}$, it is easy to write a formula $\psi\left(u_{1}, \ldots, u_{g}\right)$ such that $k^{*} \models \psi\left(t_{1}^{\prime}, \ldots, t_{g}^{\prime}\right)$, and such that ψ asserts the existence of a finite field extension having the properties above. Since $k \prec k^{*}$, there exist $t_{1}, \ldots, t_{g} \in k$ with $k \models \psi\left(t_{1}, \ldots, t_{g}\right)$; hence there exist a finite field extension L and elements $b_{i}, c_{i} \in B(L)$ having the properties (1-3) above.
2.5. The subspaces $H(b)$. Say $b=\left\{\beta_{1}, \ldots, \beta_{k}\right\} \subset C_{1}(\mathrm{k})$. Let $H_{1}(b)$ be the subspace of H generated by the images of $\beta_{1}, \ldots, \beta_{k}$. Let $H_{1}^{\perp}(b)$ be the subspace of H generated by the differences $x-y$ where $p_{j 1}(x)=p_{j 1}(y)=\beta_{i}$ for some $i \leq k$. Note that $H_{1}(b) \leq H_{1}$, while $H_{1}^{\perp}(b) \leq H_{1}{ }^{\perp}$.
Lemma 2.6. $H(b)=H_{1}(b) \oplus H_{1}^{\perp}(b)$.
Proof. The sum is direct since $H_{1} \cap H_{1}^{\perp}=0$. To show that $H_{1}(b) \oplus H_{1}^{\perp}(b)=H(b)$, consider an element of $D\left(C_{j}\right)$ supported above b. It is a linear combination of singleton elements of C_{j}, supported above some $\beta=\beta_{l}$. So it suffices to show that such an e lies in $H_{1}(b)+H_{1}^{\perp}(b)$. Say $n=\left[C_{j}: C_{1}\right]$. Then $n e=$ $p^{1 j}(\beta)-\sum_{p_{j 1}(y)=\beta}(y-e)$, and each $y-e \in H_{1}^{\perp}(b)$. This exhibits $n e$ as the difference of an element of $H_{1}(b)$ and one of $H_{1}^{\perp}(b)$. Since by definition these are \mathbb{Q}-subspaces, we have also $e \in H_{1}(b)+H_{1}^{\perp}(b)$.

We now take a closer look at the interaction of the subspaces $H(b)$.
Lemma 2.7. Assume C_{1} has genus one, and $k=k^{\text {alg }}$ has positive Kronecker dimension. Fix j; so we have a covering $p=p_{j}: C_{j} \rightarrow C_{1}$.

Let $\beta_{1} \in C_{1}(k)$. Then there exists $\beta_{2} \in C_{1}(k)$ such that, letting $\beta_{3}=\beta_{1}-\beta_{2}$, statements (1-3) below hold.
(1) $H\left(j ; \beta_{1}\right) \cap\left(H_{1}^{\perp}\left(j ; \beta_{2}\right)+H_{1}^{\perp}\left(j ; \beta_{3}\right)\right)$ is torsion.
(2) $H_{1}^{\perp}\left(j ; \beta_{1}\right) \cap\left(H\left(j ; \beta_{2}\right)+H\left(j ; \beta_{3}\right)\right)$ is torsion.
(3) $p^{j \infty} H_{1}^{\perp}\left(j ; \beta_{1}\right) \cap\left(H\left(\beta_{2}\right)+H\left(\beta_{3}\right)\right)=(0)$

Proof. We may choose a finitely generated subfield k_{0} of k such that k_{0} has positive Kronecker dimension, C_{j}, C_{1}, p are defined over k_{0}, and $\beta_{1} \in C_{1}\left(k_{0}\right)$, as are the points δ of C_{1} above $\infty=\infty_{t}{ }^{\prime}$.

Let $A=C_{1}=J\left(C_{1}\right)$ and let $B=J\left(C_{j}\right)$ be the Jacobian variety of C_{j}. Choose β_{1} as in Lemma 2.4 (with respect to $a=\beta_{1}, D=C_{j}, b$ an enumeration of $p^{-1}(a)$, in the notation of that lemma; note here $g=1$.)

Let $a_{1} \in B(k)$ represent an element of $H\left(j ; \beta_{1}\right)$; in other words, a_{1} is represented by a cycle on C_{j} whose support lies about $\delta \cup \beta_{1}$. Let $a_{1}=a_{2}+a_{3}$ such that for $i=2,3$, we have a_{i} supported above $\delta \cup \beta_{i}$, and $p\left(a_{i}\right)$ is supported above δ. We have to show that a_{1} is torsion, modulo points supported above δ.

Note that $a_{1} \in B\left(k_{0}^{a l g}\right)$, since $\delta \cup \beta_{1} \subset C_{j}\left(k_{0}^{a l g}\right)$, and a_{1} is supported on points above this finite set.

Let $K=k_{0}^{\text {alg }}\left(\beta_{2}\right)=k_{0}^{\text {alg }}\left(\beta_{3}\right), L$ the Galois hull over K of $K\left(a_{2}\right)=K\left(a_{3}\right)$, and $G=\operatorname{Aut}(L / K), m=|G|$. Then G acts on $B(L)$ and on $A(L)$, and we have a trace map (sum of conjugates) tr : B(L) $\rightarrow B(K)$. Since G fixes a_{1} we have $\operatorname{tr}\left(a_{1}\right)=m a_{1}$. On the other hand for $i=2,3$, any two elements of $p_{j 1}^{-1}\left(\beta_{i}\right)$ are $\operatorname{Aut}(L / K)$-conjugate; thus their difference has G-trace zero. Since a_{2} and a_{3} are sums of such differences, and points lying above δ, we have $\operatorname{tr}\left(a_{2}\right)$ and $\operatorname{tr}\left(a_{3}\right)$ supported above δ. Thus so is $m a_{1}$. This proves (1).

We now deduce $(2,3)$ from (1).
For (2), assume $a_{1} \in H_{1}^{\perp}\left(j ; \beta_{1}\right)$. We apply the operator $I d-p^{1 j} p_{j 1 *}$; it leaves a_{1} fixed since $a_{1} \in H_{1}^{\perp}\left(j ; \beta_{1}\right)$, so that $p_{j 1 *}\left(a_{1}\right)=0$; and takes a_{2}, a_{3} to elements of $H_{1}^{\perp}\left(j ; \beta_{i}\right)$, so that the previous paragraph applies.

The last point, (3), amounts to saying, for any $j^{\prime} \geq j$, that

$$
p^{j j^{\prime}} H_{1}^{\perp}\left(j ; \beta_{1}\right) \cap\left(H\left(j^{\prime} ; \beta_{2}\right)+H\left(j^{\prime} ; \beta_{3}\right)\right)
$$

is torsion. Let $a_{1} \in H_{1}^{\perp}\left(j ; \beta_{1}\right), a_{i} \in H\left(j^{\prime} ; \beta_{i}\right)$ for $i=2,3$ and suppose $p^{j j^{\prime}}\left(a_{1}\right)=$ $a_{2}+a_{3}$. Applying $p_{j^{\prime} j *}$, and using that $p_{j^{\prime} j *} p^{j j^{\prime}}\left(a_{1}\right)=d a_{1}$ for appropriate d, we see that $d a_{1} \in H\left(j ; \beta_{2}\right)+H\left(j ; \beta_{3}\right)$ so a_{1} is torsion.

Observe that Lemma 2.7 (3) implies that for any $j^{\prime} \geq j, p^{j j^{\prime}} H_{1}^{\perp}\left(j ; \beta_{1}\right) \cap$ $\left(H\left(j^{\prime} ; \beta_{2}\right)+H\left(æ^{\prime} ;\right.\right.$ beta $\left.\left._{3}\right)\right)=(0)$, but does not go as far as asserting the same of $H_{1}^{\perp}\left(j^{\prime} ; \beta_{1}\right) \cap\left(H\left(j^{\prime} ; \beta_{2}\right)+H\left(j^{\prime} ; \beta_{3}\right)\right)$. This is because even if β_{1} is chosen to be generic over k_{0}, it cannot be chosen generic over all j^{\prime}.

Example 2.8. Let C be a smooth projective curve over k. Let a_{1}, \ldots, a_{l} be points of $C(\mathrm{k})$, such that some $f \in \mathrm{k}(C)$ has simple zeroes at the a_{i} and no other zeroes. Then there exists a (ramified) double covering $p: E \rightarrow C$ and points
$b_{i}, c_{i} \in p^{-1}\left(a_{i}\right)$ with distinct images in $\mathbb{Q} \otimes J(E)$, such that $\sum b_{i}=\sum c_{i}$ in $J(E)$. Thus the groups $H\left(a_{i}\right)_{1}^{\perp}$ are not in direct sum.

Proof. Choose a projective embedding of C, and find homogeneous polynomials f_{0}, f_{1} such that $f=f_{0} / f_{1}$ on C. Choose $\alpha \in \mathrm{k}$ such that $4 \alpha f^{2}-1$ has distinct roots in C, so that it is not a perfect square in $\mathrm{k}(C)$. Define $E \leq C \times \mathbb{P}^{1}$ by the equation:

$$
f_{0}(x) y_{1}^{2}+f_{1}(x) y_{1} y_{0}+\alpha f_{0}(x) y_{0}^{2}=0
$$

Because of the condition on the discriminant, E is an irreducible curve. Let $\pi: E \rightarrow C$ be the projection $(x, y) \mapsto x$. Consider the poles and zeroes of y_{1} / y_{0} on E, i.e. the zeroes of y_{1} and of y_{0}. When $f_{1}(x)=0$ we may divide by $f_{0}(x)$ to obtain $y_{1}= \pm \sqrt{\alpha} y_{0}$, two points that are not poles or zeroes of y_{1} / y_{0}. Thus we may restrict to $f_{1}(x) \neq 0$ and write

$$
f(x) y_{1}^{2}+y_{1} y_{0}+\alpha f(x) y_{0}^{2}=0
$$

When $f(a)=0$ we find the equation $y_{1} y_{0}=0$, giving a pole and a zero of y lying above a; it is easy to check that E is smooth at these points, so these still give one pole and one zero of the normalization \widetilde{E} of e. When $f(a) \neq 0$ we see that y_{1} / y_{0} is integral over k so it has no poles over a. Passing to the normalization of E, we find no new poles, so we have a simple pole b_{i} and a zero c_{i} above each a_{i}, and as there are no further poles, there can be no further zeroes either.

Notably, the hypothesis applies to almost all l-tuples a_{1}, \ldots, a_{l} if l is at least than the genus of C. By considering $b_{1}-c_{1}=b_{2}-c_{2}$ we see that $H\left(a_{1}\right) \cap H\left(a_{2}\right) \neq$ (0) even when a_{1}, a_{2} are independent generics of a rational or elliptic curve.

3. Interpreting the rational field

We consider the structure \mathcal{S} consisting of the Boolean algebra \mathbb{B}, the ideal \mathbb{B}_{f}, the partially ordered group D, the support map $D \rightarrow \mathbb{B}_{f}$, the group H and the homomorphism $\rho: D \rightarrow H$.

The following interpretation is implicit in [4] and [3].
Lemma 3.1. (cf. [4]) S can be interpreted in $\mathrm{k}[t]^{\text {int }}$.
Proof. Let $A=\mathrm{k}[t]^{\mathrm{int}}$. The interpretation hinges on the interplay between ideals and radical ideals. Finitely generated ideals are uniformly definable as by Lemma 2.1 they are all 2-generated. As for radicals: since all prime ideals of A are maximal, the radical of an ideal, intersection of all prime ideals containing it, coincides with the Jacobson radical; the standard formula for the Jacobson radical of a definable ideal I shows that \sqrt{I} is definable too.
\mathbb{B}_{f} can be identified with the set of radicals of finitely generated ideals of $\mathrm{k}[t]^{\text {int }}$. Intersection in \mathbb{B}_{f} corresponds to the radical of the sum of ideals; union to the intersection. The difference of two elements of \mathbb{B}_{f} corresponds to the operation of (radical) ideals, mapping (I, J) to $\{x: J x \subset I\}$. Given \mathbb{B}_{f} with this structure,
the Boolean algebra \mathbb{B} can be easily interpreted by adding a formal element 1 and defining the obvious structure on $\mathbb{B}_{f} \cup\left\{1-a: a \in \mathbb{B}_{f}\right\}$.

Let D^{+}be the semigroup of non-negative elements of D. Define a map α : $A^{2} \rightarrow D^{+}, \alpha(a, b)(p)=\min \left(v_{p}(a), v_{p}(b)\right) ;$ more precisely, define this at the level of each sufficiently large field i of the limit system, and check compatibility. By Lemma 2.1, α is surjective. We have to show that equality and the ordered group operations + , min pull back to definable sets on A^{4}. Indeed min corresponds to the sum of ideals, i.e. $\alpha\left(a^{\prime \prime}, b^{\prime \prime}\right)=\min \left(\alpha(a, b), \alpha\left(a^{\prime}, b^{\prime}\right)\right)$ iff $A\left(a, b, a^{\prime}, b^{\prime}\right)=A\left(a^{\prime \prime}, b^{\prime \prime}\right)$. Equality corresponds to equality of ideals. + corresponds to product of ideals. The lattice-ordered group D is now easily definable as the set of differences $a-b$ with $a, b \in D^{+}$.

Observe that D is interpreted along with the structural map $\alpha: A^{2} t o D^{+} \subseteq D$. In particular we can define $\beta(a)=\alpha(a, a)$ so that $\beta(a)(p)=v_{p}(a)$. We define H as D modulo the image of β.

The support map $D \rightarrow \mathbb{B}_{f}$ is obtained by factoring through D the map $A^{2} \rightarrow$ \mathbb{B}_{f}, taking $\left(a_{1}, a_{2}\right)$ to the radical ideal generated by a_{1}, a_{2}.

Assume k has positive Kronecker dimension

Lemma 3.2. Assume C_{1} has genus 1. There exists a formula $\phi(x, y)$ such that for any $a \in H_{1}, \phi(x, a)$ defines $\mathbb{Q} a$ (a subspace of H.)

Proof. We have a definable family Ξ_{1} of \mathbb{Q}-subspaces of H, namely all the ones of the form $H(b)$ for $b \in \mathbb{B}_{f}$.

So $\Xi=\left\{U+V: U, V \in \Xi_{1}\right\}$ is also a uniformly definable family (actually $\Xi=\Xi_{1}$ since $H\left(b \cup b^{\prime}\right)=H(b)+H\left(b^{\prime}\right)$.)

For $a \in H$, let $\Phi(a)$ denote the intersection of all $U \in \Xi$ with $a \in U$. So $\Phi(a)$ is definable uniformly in a; it is a \mathbb{Q}-space; and $a \in \Phi(a)$. If $a \in H\left(C_{1}\right)$, we also write $\Phi(a)$ for $\Phi(\bar{a})$ where $\bar{a}=p_{1 \infty}(a)$. Moreover we write $H(a)$ for $H\left(\pi_{1 \infty}(\{a\})\right)$.
Claim . Let $a \in H\left(C_{1}\right)$. Then $\Phi(a)=\mathbb{Q} \bar{a}$.
Let $C_{j} \rightarrow C_{1}$ be some other curve, covering C_{1}. Let $b \in H\left(C_{j}\right)$, supported over (the support of) a, but such that there are no nonzero $m, m^{\prime} \in \mathbb{Z}$ with $m a+m^{\prime} b=0$; i.e. \bar{b} is not a rational multiple of \bar{a}. We have to show that $\bar{b} \notin \Phi(a)$.

Let $a^{\prime} \in C_{1}$ be generic (over a, b and a base of definition for C_{j}), and let $\mathrm{a} "=\mathrm{a}+\mathrm{a}$ '. Then $a \in H\left(a^{\prime}\right)+H\left(a^{\prime \prime}\right)$. So we are done if we show
$\left.{ }^{*}\right) b \notin H\left(a^{\prime}\right)+H\left(a^{\prime \prime}\right)$.
${ }^{*}$) follows by combining Lemma 2.6 and Lemma 2.7. Suppose $b=b^{\prime}+b^{\prime \prime}$, with $b^{\prime} \in H\left(a^{\prime}\right)$ and $b^{\prime \prime} \in H\left(a^{\prime \prime}\right)$. By Lemma 2.6 may subtract a scalar multiple of a from b, so as to have $b \in p^{j \infty} H_{1}^{\perp}(j ; a)$. But then by Lemma 2.7 we have $b=0$, contradicting that it is not a multiple of a.

Proof of Theorem 1.1: interpreting \mathbb{Q} with parameters. One can interpret a 2-dimensional vector space V over \mathbb{Q}, with the family of all subspaces of V. Choose a_{1}, a_{2} linearly independent in $H\left(C_{1}\right)$. Let $V=\mathbb{Q} a_{1}+\mathbb{Q} a_{2}$. Then V is definable, since + is definable on H. Now letting b vary and considering $\phi(x, b) \cap V$, we obtain a family of subspces of V , including all one-dimensional subspaces of V.

It is easy to interpret \mathbb{Q} in such a vector space, with a distinguished basis. ${ }^{2}$ Now $(\mathbb{N},+, \cdot)$ is interpretable by a theorem of J. Robinson, using the theory of quadratic forms over \mathbb{Q}.

Undecidability of $\left(\mathrm{k}[t]^{\text {int }},+, \cdot\right)$ follows: Let T_{0} be a non-recursive finitely axiomatizable theory, true in $(\mathbb{N},+, \cdot)$. Let N_{u} be a uniformly definable family of rings in $\mathrm{k}[t]^{\text {int }}$, including at least one copy of $(\mathbb{N},+, \cdot)$. Then $T_{0} \vdash \theta$ iff $\mathrm{k}[t]^{\text {int }} \models(\forall u)\left(N_{u} \models \psi \rightarrow \theta\right)$. So $T h\left(\mathrm{k}[t]^{\text {int }}\right)$ cannot be recursive.
3.3. Extensions. The use of an elliptic curve C_{1} was convenient, but not necessary. To see this let g be the genus of C_{1}, and let us drop the assumption that $g=1$.

Lemma 2.7 can be generalized as follows.
Lemma 3.4. Let $p=p_{j}: C_{j} \rightarrow C_{1}$ be defined over a subfield k_{0} of k. Let $\beta_{1,1}, \ldots, \beta_{1, m} \in C_{1}\left(k_{0}\right)$, let $\beta_{2,1}, \ldots, \beta_{2, g}$ be g elements of C_{1} that are algebraically independent over k_{0}, and let $\beta_{3,1}, \ldots, \beta_{3, g}$ be elements of C_{1} such that in the Jacobian J_{1} we have

$$
\sum_{\nu=1}^{m} \beta_{1, \nu}=\sum_{\mu=1}^{g} \beta_{2, \mu}+\sum_{\mu=1}^{g} \beta_{3, \mu}
$$

Then

$$
p^{j \infty} H_{1}^{\perp}\left(j ; \beta_{1}\right) \cap\left(H\left(\beta_{2}\right)+H\left(\beta_{3}\right)\right)=(0)
$$

The proof is the same as of Lemma 2.7.
Using Lemma 3.4 in place of 2.7, the proof of Lemma 3.2 goes through for C_{1} of any genus g, and thus for any curve C_{j} as well. We thus have, with no assumptions of genus:

Lemma 3.5. Assume k has positive Kronecker dimension. There exists a formula $\phi(x, y)$ such that for any i and any $a \in H_{i}, \phi(x, a)$ defines $\mathbb{Q} a$ (a subspace of H.)

[^1]In fact there is a simpler argument giving a stronger result, at least when the transcendence degree of k is infinite.

Lemma 3.6. Assume k has infinite transcendence degree over the prime field. . There exists a formula $\phi(x, y)$ such that for any $a \in H, \phi(x, a)$ defines $\mathbb{Q} a$ (a subspace of H.)

Proof.
It follows that the various copies of \mathbb{Q} we interpreted are all definably isomorphic (by embedding the two 2-dimensional geometries in a bigger one of dimension ≤ 4).
Proof of Theorem 1.1, interpreting \mathbb{Q} in $\left(\mathrm{k}[t]^{\text {int }},+, \cdot, t\right)$ without additional parameters. We have found a finite definable class P of parameters, such that for any $c \in P$ which we obtain uniformly a field K_{c} isomorphic to \mathbb{Q}, and such for any $c, c^{\prime} \in P$ we obtain (with further parameters, by embedding the two 2-dimensional geometries in a bigger one of dimension ≤ 4) an isomorphism $K_{c} \rightarrow K_{c^{\prime}}$. In this situation, by Remark 3.7 below, a copy of \mathbb{Q} may also be interpreted without parameters.

The next lemma is valid in any structure.

Remark 3.7. Assume:

(1) P is a definable set
(2) For $c \in P$, we have an interpretable structure Z_{c} in some finite language L, given uniformly in c.
(3) For $c, d \in P$ (and uniformly in c, d) there exists an isomorphism $Z_{c} \rightarrow Z_{d}$, definable possibly with additional parameters.
(4) Each Z_{c} has trivial automorphism group.

Then there exists a structure Z interpretable without parameters, and isomorphic to each Z_{c}.

Proof: Let $Z=\left\{(a, z): a \in P, z \in Z_{c}\right\} / E$, where E is the equivalence relation: $(c, y) E(d, z)$ iff there exists a definable isomorphism $Z_{c} \rightarrow Z_{d}$ with $y \mapsto z$.

By assumption, for some formula $\phi(u, v, w, x, y)$, for any $c, d \in P$, for some e, $\phi(c, d, e, x, y)$ defines an isomorphism $Z_{c} \rightarrow Z_{d}$. Let $I S(c, d)$ be the (nonempty, definable) set of all e such that $\phi(c, d, e, x, y)$ defines an isomorphism $Z_{c} \rightarrow Z_{d}$. Note that $(c, f) E(d, g)$ iff for all $e \in I S(c, d)$ we have $\phi(c, d, e, f, g)$. Indeed if $\alpha: Z_{c} \rightarrow Z_{d}$ is an isomorphism with $\alpha(f)=g$, let $e \in I S(c, d)$ and let α^{\prime} be the isomorphism $Z_{c} \rightarrow Z_{d}$ defined by $\phi(c, d, e, x, y)$; then by uniqueness of the isomorphism $Z_{c} \rightarrow Z_{d}$ assumed in (4), we have $\alpha=\alpha^{\prime}$ so $\phi(c, d, e, f, g)$ holds. The other direction is clear.

Hence, E is definable.
Now pick $c \in P$; define $f_{c}: Z_{c} \rightarrow Z$ by $f_{c}(z)=(c, z) / E$. Clearly f_{c} is a bijection $Z_{c} \rightarrow Z$. Moreover, by definition of E, for any $c, d \in P$ we have that
$f_{d}^{-1} \circ f_{c}: Z_{c} \rightarrow Z_{d}$ is an isomorphism. Hence there exists a unique L-structure on Z such that each f_{c} is an isomorphism.

Question 3.8. Consider the structure \mathcal{S} described above; view the support relation on $H \times B$ as a basic relation (asserting of (h, b) that there exists $d \in D$ with $\rho(d)=h$ and supported on b.) Is the universal theory of \mathcal{S} decidable? With parameters allowed, the formula defining $\mathbb{Q} c$ is universal: $x \in \mathbb{Q} c$ iff for all $b \in B$, if c is supported on b then so is x. From this it follows formally that a 2 -dimensional \mathbb{Q}-vector space $\mathbb{Q} c_{1}+\mathbb{Q} c_{2}$ is defined by an $\exists \forall$-formula; but it seems likely that is can also be defined by a universal formula, perhaps stating that any supports for the c_{i} also jointly support x. One can guess that the field \mathbb{Q} can also be interpreted by means of universal formulas.
Question 3.9. Can we also interpret \mathbb{Q} within \mathbb{B}_{f} ? Here example 2.8 is relevant. Let $B_{\text {dep }}(C)$ be the set of finite subsets of C, whose image in $\mathbb{Q} \otimes H(C)$ is $\mathbb{Q}^{+}{ }^{-}$ linearly dependent. For $i \leq j$, note $B_{\text {dep }}\left(C_{i}\right)=\left(p^{i j}\right)^{-1} H_{d e p}\left(C_{j}\right)$. It is clear that the image of a dependent set is dependent. Conversely the norm of a function showing dependence of a full pullback on C_{j}, will already show dependence on C_{i}. Let $B_{\text {dep }} \subset \mathbb{B}_{f}$ be the limit of these sets. We can easily interpret \mathbb{Q} in $\left(C, \mathbb{B}_{f}, B_{\text {dep }}\right)$ for a fixed C, at least.

Question 3.10. Can one understand the theory of the ring $\mathrm{k}[t]^{\text {int }}$ relative to \mathbb{B}, H ?

Question 3.11. The theory of $k[t]^{\text {int }}$ depends at most on the characteristic of k, and on the transcendence degree over the prime field. Does it in fact depend on the latter?

This could be the case if one can understand the theory of $\mathrm{k}[t]^{\text {int }}$ relative to the scalar field \mathbb{Q}. On the other hand if the constant field k is definable, the answer is yes and one has a strong form of undecidability by interpreting all finite subsets of k.

References

[1] Fried, Michael D.; Jarden, Moshe Field arithmetic. Third edition. Revised by Jarden. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], 11. Springer-Verlag, Berlin, 2008.
[2] A. Prestel, J. Schmid "Existentially closed domains with radical relations" J. Reine Angew. Math., 407 (1990) pp. 178-201
[3] L. van den Dries, "Elimination theory for the ring of algebraic integers" J. Reine Angew. Math. , 388 (1988), pp. 189-205
[4] L. van den Dries, A. Macintyre, "The logic of Rumely's local-global principle" J. Reine Angew. Math. , 407 (1990) pp. 33-56

[^0]: ${ }^{1}$ There will be no risk of confusion, as finite sets and curves are denoted by different letters, such as b and C.

[^1]: ${ }^{2}$ This is related to the fundamental theorem of projective geometry, but is an especially basic case, underlying the algebrization of Euclid by Descartes, [?]. We can take the universe of \mathbb{Q} to be the x-axis, i.e. the line through $(0,0)$ and $(1,0)$. The bijection with the y axis can be defined by mapping a to b if the line through (a, b) is parallel to the line through the basis elements $(1,0),(0,1)$. Multiplication $x \cdot y$ can be defined by considering lines parallel to the one through $(x, 0)$ and $(0,1)$, and passing through $(0, y)$. By means of parallelograms it is easy to define when two segments on the x-axis have equal length, and then we immediately define addition.

